3 resultados para Early endosomes

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SNX-BAR proteins are a sub-family of sorting nexins implicated in endosomal sorting. Here, we establish that through its phox homology (PX) and Bin-Amphiphysin-Rvs (BAR) domains, sorting nexin-4 (SNX4) is associated with tubular and vesicular elements of a compartment that overlaps with peripheral early endosomes and the juxtanuclear endocytic recycling compartment (ERC). Suppression of SNX4 perturbs transport between these compartments and causes lysosomal degradation of the transferrin receptor (TfnR). Through an interaction with KIBRA, a protein previously shown to bind dynein light chain 1, we establish that SNX4 associates with the minus end-directed microtubule motor dynein. Although suppression of KIBRA and dynein perturbs early endosome-to-ERC transport, TfnR sorting is maintained. We propose that by driving membrane tubulation, SNX4 coordinates iterative, geometric-based sorting of the TfnR with the long-range transport of carriers from early endosomes to the ERC. Finally, these data suggest that by associating with molecular motors, SNX-BAR proteins may coordinate sorting with carrier transport between donor and recipient membranes.